部署#

部署机器学习模型需要在新数据上重复特征工程步骤。在某些情况下,这些步骤需要近乎实时地执行。Featuretools 具有简化特征工程部署的功能。

保存特征#

首先,让我们构建一些生成相同格式的训练和测试数据。我们使用随机种子为测试生成不同的数据。

注意

在一个版本的 Featuretools 中保存的特征不能保证在另一个版本中加载。这意味着在升级 Featuretools 后可能需要重新创建特征。

[1]:
import featuretools as ft

es_train = ft.demo.load_mock_customer(return_entityset=True)
es_test = ft.demo.load_mock_customer(return_entityset=True, random_seed=33)
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(

现在让我们使用 DFS 构建一些特征定义。因为我们有类别特征,所以我们还根据训练数据中的值使用独热编码对其进行编码。

[2]:
feature_matrix, feature_defs = ft.dfs(
    entityset=es_train, target_dataframe_name="customers"
)

feature_matrix_enc, features_enc = ft.encode_features(feature_matrix, feature_defs)
feature_matrix_enc
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
[2]:
COUNT(sessions) NUM_UNIQUE(sessions.device) COUNT(transactions) MAX(transactions.amount) MEAN(transactions.amount) MIN(transactions.amount) NUM_UNIQUE(transactions.product_id) SKEW(transactions.amount) STD(transactions.amount) SUM(transactions.amount) ... MODE(sessions.MODE(transactions.product_id)) 是未知 MODE(sessions.MONTH(session_start)) = 1 MODE(sessions.MONTH(session_start)) 是未知 MODE(sessions.WEEKDAY(session_start)) = 2 MODE(sessions.WEEKDAY(session_start)) 是未知 MODE(sessions.YEAR(session_start)) = 2014 MODE(sessions.YEAR(session_start)) 是未知 MODE(transactions.sessions.device) = mobile MODE(transactions.sessions.device) = desktop MODE(transactions.sessions.device) 是未知
customer_id
5 6 3 79 149.02 80.375443 7.55 5 -0.025941 44.095630 6349.66 ... False True False True False True False True False False
4 8 3 109 149.95 80.070459 5.73 5 -0.036348 45.068765 8727.68 ... False True False True False True False True False False
1 8 3 126 139.43 71.631905 5.81 5 0.019698 40.442059 9025.62 ... False True False True False True False True False False
3 6 3 93 149.15 67.060430 5.89 5 0.418230 43.683296 6236.62 ... False True False True False True False False True False
2 7 3 93 146.81 77.422366 8.73 5 0.098259 37.705178 7200.28 ... False True False True False True False False True False

5 行 × 121 列

现在,我们可以使用 featuretools.save_features 将特征列表保存到 json 文件中

[3]:
ft.save_features(features_enc, "feature_definitions.json")

计算新数据的特征矩阵#

我们可以使用 featuretools.load_features 读取已保存的特征列表,以便为我们的新实体集计算。

[4]:
saved_features = ft.load_features("feature_definitions.json")

加载回特征后,我们可以计算特征矩阵。

[5]:
feature_matrix = ft.calculate_feature_matrix(saved_features, es_test)
feature_matrix
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f29813e6820> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f29813e6040> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f29813e1ee0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f29813e6940> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f29813e18b0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
[5]:
zip_code = 60091 zip_code = 13244 zip_code 是未知 COUNT(sessions) MODE(sessions.device) = mobile MODE(sessions.device) = desktop MODE(sessions.device) 是未知 NUM_UNIQUE(sessions.device) COUNT(transactions) MAX(transactions.amount) ... SUM(sessions.MAX(transactions.amount)) SUM(sessions.MEAN(transactions.amount)) SUM(sessions.MIN(transactions.amount)) SUM(sessions.NUM_UNIQUE(transactions.product_id)) SUM(sessions.SKEW(transactions.amount)) SUM(sessions.STD(transactions.amount)) MODE(transactions.sessions.device) = mobile MODE(transactions.sessions.device) = desktop MODE(transactions.sessions.device) 是未知 NUM_UNIQUE(transactions.sessions.device)
customer_id
1 True False False 6 False True False 3 73 147.64 ... 834.08 524.919674 198.92 25.0 -1.546156 217.064024 True False False 3
4 False True False 9 False True False 3 126 147.55 ... 1180.90 733.862898 193.08 43.0 -1.797214 319.497611 False True False 3
3 True False False 5 True False False 2 64 148.09 ... 715.80 407.390549 108.69 23.0 0.353061 215.417211 True False False 2
2 False True False 8 False True False 3 129 148.34 ... 1100.82 615.714934 136.01 39.0 -0.082021 315.817331 False True False 3
5 True False False 7 False True False 3 108 149.53 ... 997.48 584.302915 137.50 33.0 -0.595128 261.535265 False True False 3

5 行 × 121 列

如上所示,我们获得了与之前完全相同的特征,但使用测试数据计算。

导出特征矩阵#

保存为 csv#

特征矩阵是一个 pandas DataFrame,我们可以将其保存到磁盘。

[6]:
feature_matrix.to_csv("feature_matrix.csv")

我们也可以按如下方式读回它

[7]:
import pandas as pd

saved_fm = pd.read_csv("feature_matrix.csv", index_col="customer_id")
saved_fm
[7]:
zip_code = 60091 zip_code = 13244 zip_code 是未知 COUNT(sessions) MODE(sessions.device) = mobile MODE(sessions.device) = desktop MODE(sessions.device) 是未知 NUM_UNIQUE(sessions.device) COUNT(transactions) MAX(transactions.amount) ... SUM(sessions.MAX(transactions.amount)) SUM(sessions.MEAN(transactions.amount)) SUM(sessions.MIN(transactions.amount)) SUM(sessions.NUM_UNIQUE(transactions.product_id)) SUM(sessions.SKEW(transactions.amount)) SUM(sessions.STD(transactions.amount)) MODE(transactions.sessions.device) = mobile MODE(transactions.sessions.device) = desktop MODE(transactions.sessions.device) 是未知 NUM_UNIQUE(transactions.sessions.device)
customer_id
1 True False False 6 False True False 3 73 147.64 ... 834.08 524.919674 198.92 25.0 -1.546156 217.064024 True False False 3
4 False True False 9 False True False 3 126 147.55 ... 1180.90 733.862898 193.08 43.0 -1.797214 319.497611 False True False 3
3 True False False 5 True False False 2 64 148.09 ... 715.80 407.390549 108.69 23.0 0.353061 215.417211 True False False 2
2 False True False 8 False True False 3 129 148.34 ... 1100.82 615.714934 136.01 39.0 -0.082021 315.817331 False True False 3
5 True False False 7 False True False 3 108 149.53 ... 997.48 584.302915 137.50 33.0 -0.595128 261.535265 False True False 3

5 行 × 121 列