过渡到 Featuretools 1.0 版本#

Featuretools 1.0 版本包含许多重要变更,这些变更影响了 EntitySets 的创建方式、primitives 的定义方式以及在某些情况下生成的特征矩阵。本文档将概述这些重要变更,帮助现有 Featuretools 用户过渡到 1.0 版本。

背景与介绍#

为何进行这些更改?#

库之间缺乏统一的类型系统使得库之间共享信息变得更加困难。这个问题促成了 Woodwork 的开发。更新 Featuretools 使用 Woodwork 管理列类型信息,可以在不进行自定义类型系统之间昂贵的转换的情况下,轻松与其它库共享特征矩阵的列类型信息。例如,也采用了 Woodwork 的 EvalML 现在可以直接使用特征矩阵上的 Woodwork 类型信息来创建机器学习模型,而无需首先推断或重新定义列类型。

在 Featuretools 中使用 Woodwork 管理类型的其他好处包括

  • 代码更简洁 - 已移除自定义类型管理代码

  • 随着 Woodwork 的改进,可以无缝集成新类型和改进类型集成

  • 方便灵活地存储关于列的附加信息。例如,我们现在可以存储某个特征是由 Featuretools 工程生成还是存在于原始数据中。

发生了什么变化?#

  • 旧版 Featuretools 自定义类型系统已被 Woodwork 取代,用于管理列类型

  • Featuretools 中已移除 EntityVariable

  • 几个关键的 Featuretools 方法已移动或更新

旧版类型系统与 Woodwork 类型系统的比较#

Featuretools < 1.0

Featuretools 1.0

描述

Entity

Woodwork DataFrame

存储所有列的类型信息

Variable

ColumnSchema

存储单个列的类型信息

Variable 子类

LogicalType 和 semantic_tags

用于定义列类型的元素

重要方法变更摘要#

下表概述了发生的最重要变更。摘要:在某些情况下,方法参数也发生了变化,本文档将详细介绍这些变化。

旧版本

Featuretools 1.0

EntitySet.entity_from_dataframe

EntitySet.add_dataframe

EntitySet.normalize_entity

EntitySet.normalize_dataframe

EntitySet.update_data

EntitySet.replace_dataframe

Entity.variable_types

es['dataframe_name'].ww

es['entity_id']['variable_name']

es['dataframe_name'].ww.columns['column_name']

Entity.convert_variable_type

es['dataframe_name'].ww.set_types

Entity.add_interesting_values

es.add_interesting_values(dataframe_name='df_name', …)

Entity.set_secondary_time_index

es.set_secondary_time_index(dataframe_name='df_name', …)

Feature(es['entity_id']['variable_name'])

Feature(es['dataframe_name'].ww['column_name'])

dfs(target_entity='entity_id', …)

dfs(target_dataframe_name='dataframe_name', …)

有关 Woodwork 如何管理类型信息的更多信息,请参阅 Woodwork 理解类型和标签 指南。

这些更改对用户意味着什么?#

移除这些类需要将 Entity 中的几个方法移动到 EntitySet 对象。此更改还影响了关系、特征和原语的定义方式,需要与之前所需的参数不同。此外,由于 Woodwork 类型系统与旧版 Featuretools 类型系统不完全相同,在某些情况下,由于列被识别为不同类型,返回的特征矩阵可能会略有不同。

所有这些更改以及更多内容将在本文档中详细回顾,并尽可能提供新旧 API 的示例。

移除 Entity 类以及更新 EntitySet#

在旧版本的 Featuretools 中,通过添加多个实体并在不同实体的变量(列)之间定义关系来创建 EntitySet。从 Featuretools 1.0 版本开始,EntitySets 现在通过添加多个数据框并在数据框的列之间定义关系来创建。虽然概念类似,但在过程上有一些细微的差异。

向 EntitySet 添加数据框#

向 EntitySet 添加数据框时,用户可以传入一个 Woodwork 数据框或一个不包含 Woodwork 类型信息的普通数据框。如果用户提供了一个已初始化 Woodwork 类型信息的数据框,Featuretools 将直接使用此类型信息。如果用户提供了一个未初始化 Woodwork 的数据框,Featuretools 将在数据框上初始化 Woodwork,并对任何未指定类型信息的列执行类型推断。

以下是一些示例来说明此过程。首先,我们将创建两个小数据框用于示例。

[1]:
import pandas as pd

import featuretools as ft
[2]:
orders_df = pd.DataFrame(
    {"order_id": [0, 1, 2], "order_date": ["2021-01-02", "2021-01-03", "2021-01-04"]}
)
items_df = pd.DataFrame(
    {
        "id": [0, 1, 2, 3, 4],
        "order_id": [0, 1, 1, 2, 2],
        "item_price": [29.95, 4.99, 10.25, 20.50, 15.99],
        "on_sale": [False, True, False, True, False],
    }
)

在旧版本的 Featuretools 中,用户首先创建 EntitySet 对象,然后通过调用 entity_from_dataframe 向 EntitySet 添加数据框,如下所示。

es = ft.EntitySet('old_es')

es.entity_from_dataframe(dataframe=orders_df,
                         entity_id='orders',
                         index='order_id',
                         time_index='order_date')
es.entity_from_dataframe(dataframe=items_df,
                         entity_id='items',
                         index='id')
Entityset: old_es
  Entities:
    orders [Rows: 3, Columns: 2]
    items [Rows: 5, Columns: 3]
  Relationships:
    No relationships

使用 Featuretools 1.0,向 EntitySet 添加数据框的步骤相同,但一些细节已更改。首先,像之前一样创建一个 EntitySet。要添加数据框,调用 EntitySet.add_dataframe 代替之前的 EntitySet.entity_from_dataframe 调用。请注意,数据框的名称在 dataframe_name 参数中指定,该参数之前称为 entity_id

[3]:
es = ft.EntitySet("new_es")

es.add_dataframe(
    dataframe=orders_df,
    dataframe_name="orders",
    index="order_id",
    time_index="order_date",
)
[3]:
Entityset: new_es
  DataFrames:
    orders [Rows: 3, Columns: 2]
  Relationships:
    No relationships

您还可以通过先在数据框上 初始化 Woodwork,然后将已初始化 Woodwork 的数据框直接传递给 add_dataframe 调用来定义名称、索引和时间索引。对于此示例,我们将在 items_df 上初始化 Woodwork,将数据框名称设置为 items,并指定索引应为 id 列。

[4]:
items_df.ww.init(name="items", index="id")
items_df.ww
[4]:
物理类型 逻辑类型 语义标签
id int64 Integer ['index']
order_id int64 Integer ['numeric']
item_price float64 Double ['numeric']
on_sale bool Boolean []

初始化 Woodwork 后,调用 add_dataframe 时不再需要为 dataframe_nameindex 参数指定值,因为 Featuretools 将直接使用在初始化 Woodwork 时已指定的值。

[5]:
es.add_dataframe(dataframe=items_df)
[5]:
Entityset: new_es
  DataFrames:
    orders [Rows: 3, Columns: 2]
    items [Rows: 5, Columns: 4]
  Relationships:
    No relationships

访问列类型信息#

以前,可以通过 Entity.variable_types 访问整个 Entity 的列变量类型信息,或者通过首先通过 es['entity_id']['col_id'] 选择单个列来访问单个列的类型信息。

es['items'].variable_types
{'id': featuretools.variable_types.variable.Index,
 'order_id': featuretools.variable_types.variable.Numeric,
 'item_price': featuretools.variable_types.variable.Numeric}
es['items']['item_price']
<Variable: item_price (dtype = numeric)>

使用更新版本的 Featuretools,可以通过数据框上的 .ww 命名空间查看单个数据框中所有列的逻辑类型和语义标签。首先,使用 es['dataframe_name'] 从 EntitySet 中选择数据框,然后通过在末尾链接一个 .ww 调用来访问类型信息,如下所示。

[6]:
es["items"].ww
[6]:
物理类型 逻辑类型 语义标签
id int64 Integer ['index']
order_id int64 Integer ['numeric']
item_price float64 Double ['numeric']
on_sale bool Boolean []

可以从存储在数据框上的 Woodwork 列字典中获取单个列的逻辑类型和语义标签,返回一个存储类型信息的 Woodwork.ColumnSchema 对象

[7]:
es["items"].ww.columns["item_price"]
[7]:
<ColumnSchema (Logical Type = Double) (Semantic Tags = ['numeric'])>

类型推断与更新列类型#

Featuretools 将尝试推断用户未定义类型的任何列的类型。在 1.0 版本之前,Featuretools 实现了自定义类型推断代码来确定应分配给每个列的变量类型。您可以通过查看 Entity.variable_types 字典的内容来查看推断的变量类型。

从 Featuretools 1.0 开始,列类型推断由 Woodwork 处理。在向 EntitySet 添加数据框时,用户未分配逻辑类型的任何列将由 Woodwork 推断其逻辑类型。与之前一样,可以通过在调用 EntitySet.add_dataframe 时在字典中传递相应的逻辑类型来跳过数据框中任何列的类型推断。

例如,我们可以创建一个新的数据框并将其添加到 EntitySet,指定用户的全名逻辑类型为 Woodwork PersonFullName 逻辑类型。

[8]:
users_df = pd.DataFrame(
    {"id": [0, 1, 2], "name": ["John Doe", "Rita Book", "Teri Dactyl"]}
)
[9]:
es.add_dataframe(
    dataframe=users_df,
    dataframe_name="users",
    index="id",
    logical_types={"name": "PersonFullName"},
)

es["users"].ww
[9]:
物理类型 逻辑类型 语义标签
id int64 Integer ['index']
name string PersonFullName []

查看上面的类型信息,我们可以看到 name 列的逻辑类型已按照我们的指定设置为 PersonFullName

会出现类型推断将列识别为具有不正确逻辑类型的情况。在这种情况下,可以使用 Woodwork set_types 方法更新逻辑类型。假设我们希望 orders 数据框的 order_id 列具有 Categorical 逻辑类型,而不是推断的 Integer 类型。以前,这可以通过 Entity.convert_variable_type 方法完成。

from featuretools.variable_types import Categorical

es['items'].convert_variable_type(variable_id='order_id', new_type=Categorical)

现在,我们可以使用 Woodwork 执行相同的更新

[10]:
es["items"].ww.set_types(logical_types={"order_id": "Categorical"})
es["items"].ww
[10]:
物理类型 逻辑类型 语义标签
id int64 Integer ['index']
order_id category Categorical ['category']
item_price float64 Double ['numeric']
on_sale bool Boolean []

有关 Woodwork 类型以及如何在 Featuretools 中使用它们的更多信息,请参阅 Featuretools 中的 Woodwork 类型

添加关注值#

可以将关注值添加到 EntitySet 中的所有数据框、EntitySet 中的单个数据框或 EntitySet 中数据框的单个列。

要为 EntitySet 中的所有数据框添加关注值,只需调用 EntitySet.add_interesting_values,可选择指定为每列添加的最大值数量。此操作从旧版本的 Featuretools 到 1.0 版本保持不变。

为单个数据框或单个列添加值的操作已更改。以前,要为 Entity 添加关注值,用户会调用 Entity.add_interesting_values()

es['items'].add_interesting_values()

现在,要为单个数据框指定关注值,您需要在 EntitySet 上调用 add_interesting_values,并传入您想要添加关注值的数据框名称

[11]:
es.add_interesting_values(dataframe_name="items")

以前,要手动为列添加关注值,您只需将它们分配给变量的属性

es['items']['order_id'].interesting_values = [1, 2]

现在,这通过 EntitySet.add_interesting_values 完成,传入数据框的名称和一个字典,该字典将列名映射到要为该列分配的关注值。例如,要将 [1, 2] 的关注值分配给 items 数据框的 order_id 列,请使用以下方法

[12]:
es.add_interesting_values(dataframe_name="items", values={"order_id": [1, 2]})

可以通过向传递给 values 参数的字典添加更多条目来为同一数据框中的多列分配关注值。

访问关注值的方式也发生了变化。以前可以从变量中查看关注值

es['items']['order_id'].interesting_values

关注值现在存储在数据框中列的 Woodwork metadata 中

[13]:
es["items"].ww.columns["order_id"].metadata["interesting_values"]
[13]:
[1, 2]

设置辅助时间索引#

在早期版本的 Featuretools 中,可以通过调用 Entity.set_secondary_time_index 在 Entity 上设置辅助时间索引。

es_flight = ft.demo.load_flight(nrows=100)

arr_time_columns = ['arr_delay', 'dep_delay', 'carrier_delay', 'weather_delay',
                    'national_airspace_delay', 'security_delay',
                    'late_aircraft_delay', 'canceled', 'diverted',
                    'taxi_in', 'taxi_out', 'air_time', 'dep_time']
es_flight['trip_logs'].set_secondary_time_index({'arr_time': arr_time_columns})

由于 Entity 类已在 Featuretools 1.0 中移除,现在需要通过 EntitySet 完成

[14]:
es_flight = ft.demo.load_flight(nrows=100)

arr_time_columns = [
    "arr_delay",
    "dep_delay",
    "carrier_delay",
    "weather_delay",
    "national_airspace_delay",
    "security_delay",
    "late_aircraft_delay",
    "canceled",
    "diverted",
    "taxi_in",
    "taxi_out",
    "air_time",
    "dep_time",
]
es_flight.set_secondary_time_index(
    dataframe_name="trip_logs", secondary_time_index={"arr_time": arr_time_columns}
)
Downloading data ...
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/demo/flight.py:291: PerformanceWarning: Adding/subtracting object-dtype array to TimedeltaArray not vectorized.
  clean_data.loc[:, "dep_time"] = clean_data["scheduled_dep_time"] + pd.to_timedelta(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/demo/flight.py:296: PerformanceWarning: Adding/subtracting object-dtype array to TimedeltaArray not vectorized.
  clean_data.loc[:, "arr_time"] = clean_data["dep_time"] + pd.to_timedelta(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/demo/flight.py:302: PerformanceWarning: Adding/subtracting object-dtype array to TimedeltaArray not vectorized.
  clean_data["scheduled_dep_time"] + clean_data["scheduled_elapsed_time"]
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
  series = series.replace(ww.config.get_option("nan_values"), np.nan)
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
  series = series.replace(ww.config.get_option("nan_values"), np.nan)
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
  series = series.replace(ww.config.get_option("nan_values"), np.nan)
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/woodwork/logical_types.py:841: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
  series = series.replace(ww.config.get_option("nan_values"), np.nan)

以前,可以通过 es_flight['trip_logs'].secondary_time_index 直接从 Entity 访问辅助时间索引。从 Featuretools 1.0 开始,辅助时间索引及其关联的列存储在 Woodwork 数据框元数据中,可以通过以下方式访问。

[15]:
es_flight["trip_logs"].ww.metadata["secondary_time_index"]
[15]:
{'arr_time': ['arr_delay',
  'dep_delay',
  'carrier_delay',
  'weather_delay',
  'national_airspace_delay',
  'security_delay',
  'late_aircraft_delay',
  'canceled',
  'diverted',
  'taxi_in',
  'taxi_out',
  'air_time',
  'dep_time',
  'arr_time']}

规范化实体/数据框#

EntitySet.normalize_entity 在 Featuretools 1.0 中已重命名为 EntitySet.normalize_dataframe。新方法与旧方法工作方式相同,但某些参数已重命名。下表显示了新旧名称以供参考。调用此方法时,需要使用新的参数名称。

旧参数名称

新参数名称

base_entity_id

base_dataframe_name

new_entity_id

new_dataframe_name

additional_variables

additional_columns

copy_variables

copy_columns

new_entity_time_index

new_dataframe_time_index

new_entity_secondary_time_index

new_dataframe_secondary_time_index

定义并添加关系#

在早期版本的 Featuretools 中,通过创建接受两个 Variables 作为输入的 Relationship 对象来定义关系。要定义 orders Entity 和 items Entity 之间的关系,我们首先创建一个 Relationship,然后将其添加到 EntitySet

relationship = ft.Relationship(es['orders']['order_id'], es['items']['order_id'])
es.add_relationship(relationship)

使用 Featuretools 1.0,过程类似,但有两种不同的方法将关系添加到 EntitySet。一种方法是将数据框和列名传递给 EntitySet.add_relationship,另一种方法是将先前创建的 Relationship 对象传递给 relationship 关键字参数。下面展示了这两种方法。

[16]:
# Undo change from above and change child column logical type to match parent and prevent warning
# NOTE: This cell is hidden in the docs build
es["items"].ww.set_types(logical_types={"order_id": "Integer"})
[17]:
es.add_relationship(
    parent_dataframe_name="orders",
    parent_column_name="order_id",
    child_dataframe_name="items",
    child_column_name="order_id",
)
[17]:
Entityset: new_es
  DataFrames:
    orders [Rows: 3, Columns: 2]
    items [Rows: 5, Columns: 4]
    users [Rows: 3, Columns: 2]
  Relationships:
    items.order_id -> orders.order_id
[18]:
# Reset the relationship so we can add it again
# NOTE: This cell is hidden in the docs build
es.relationships = []

或者,我们可以先创建一个 Relationship,然后将其传递给 EntitySet.add_relationship。定义 Relationship 时,我们需要传入它所属的 EntitySet 以及父数据框和父列的名称,以及子数据框和子列的名称。

[19]:
relationship = ft.Relationship(
    entityset=es,
    parent_dataframe_name="orders",
    parent_column_name="order_id",
    child_dataframe_name="items",
    child_column_name="order_id",
)
es.add_relationship(relationship=relationship)
[19]:
Entityset: new_es
  DataFrames:
    orders [Rows: 3, Columns: 2]
    items [Rows: 5, Columns: 4]
    users [Rows: 3, Columns: 2]
  Relationships:
    items.order_id -> orders.order_id

更新 EntitySet 中数据框的数据#

以前,要更新(替换)与 Entity 关联的数据,用户可以调用 Entity.update_data 并传入新的数据框。例如,让我们更新 users Entity 中的数据

new_users_df = pd.DataFrame({
    'id': [3, 4],
    'name': ['Anne Teak', 'Art Decco']
})

es['users'].update_data(df=new_users_df)

要使用 Featuretools 1.0 完成此任务,我们将改用 EntitySet.replace_dataframe 方法

[20]:
new_users_df = pd.DataFrame({"id": [0, 1], "name": ["Anne Teak", "Art Decco"]})

es.replace_dataframe(dataframe_name="users", df=new_users_df)
es["users"]
[20]:
id name
0 0 Anne Teak
1 1 Art Decco

定义特征#

Featuretools 1.0 中定义特征的语法略有变化。以前,可以通过简单地传入应用于构建特征的变量来定义身份特征。

feature = ft.Feature(es['items']['item_price'])

从 Featuretools 1.0 开始,可以使用类似的语法,但由于 es['items'] 现在将返回一个 Woodwork 数据框而不是 Entity,我们需要稍微更新语法来访问 Woodwork 列。要更新,只需在数据框名称选择器和列选择器之间添加 .ww,如下所示。

[21]:
feature = ft.Feature(es["items"].ww["item_price"])

定义原语#

在早期版本的 Featuretools 中,原始输入和返回类型是通过指定适当的 Variable 类来定义的。从 1.0 版本开始,输入和返回类型由 Woodwork ColumnSchema 对象定义。

为了说明此更改,让我们仔细看看 Age 转换原语。此原语接受表示出生日期的 datetime,并返回一个对应于年龄的数字值。在以前版本的 Featuretools 中,输入类型通过指定 DateOfBirth 变量类型来定义,返回类型通过 Numeric 变量类型来指定

input_types = [DateOfBirth]
return_type = Numeric

Woodwork 没有特定的 DateOfBirth 逻辑类型,而是通过将逻辑类型指定为 Datetime 并带有 date_of_birth 语义标签来识别列为出生日期列。Woodwork 中也没有 Numeric 逻辑类型,而是 Woodwork 通过 numeric 语义标签识别所有可用于数值运算的列。此外,我们知道 Age 原语将返回一个浮点数,对应于 Woodwork 的 Double 逻辑类型。考虑到这些,我们可以使用 ColumnSchema 对象重新定义 Age 的输入类型和返回类型,如下所示

input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'date_of_birth'})]
return_type = ColumnSchema(logical_type=Double, semantic_tags={'numeric'})

除了更改输入和返回类型的定义方式之外,定义原语的其余过程保持不变。

从旧版 Featuretools 变量类型映射到 Woodwork ColumnSchemas#

Woodwork 定义的类型与 Featuretools 1.0 版本之前定义的旧变量类型不同。虽然旧变量类型与 Woodwork 定义的 ColumnSchema 对象类型之间没有直接映射,但下表显示了近似的映射。

Featuretools 变量

Woodwork Column Schema

Boolean

ColumnSchema(logical_type=Boolean) or ColumnSchema(logical_type=BooleanNullable)

Categorical

ColumnSchema(logical_type=Categorical)

CountryCode

ColumnSchema(logical_type=CountryCode)

Datetime

ColumnSchema(logical_type=Datetime)

DateOfBirth

ColumnSchema(logical_type=Datetime, semantic_tags={‘date_of_birth’})

DatetimeTimeIndex

ColumnSchema(logical_type=Datetime, semantic_tags={‘time_index’})

Discrete

ColumnSchema(semantic_tags={‘category’})

EmailAddress

ColumnSchema(logical_type=EmailAddress)

FilePath

ColumnSchema(logical_type=Filepath)

FullName

ColumnSchema(logical_type=PersonFullName)

Id

ColumnSchema(semantic_tags={‘foreign_key’})

Index

ColumnSchema(semantic_tags={‘index’})

IPAddress

ColumnSchema(logical_type=IPAddress)

LatLong

ColumnSchema(logical_type=LatLong)

NaturalLanguage

ColumnSchema(logical_type=NaturalLanguage)

Numeric

ColumnSchema(semantic_tags={‘numeric’})

NumericTimeIndex

ColumnSchema(semantic_tags={‘numeric’, ‘time_index’})

Ordinal

ColumnSchema(logical_type=Ordinal)

PhoneNumber

ColumnSchema(logical_type=PhoneNumber)

SubRegionCode

ColumnSchema(logical_type=SubRegionCode)

Timedelta

ColumnSchema(logical_type=Timedelta)

TimeIndex

ColumnSchema(semantic_tags={‘time_index’})

URL

ColumnSchema(logical_type=URL)

Unknown

ColumnSchema(logical_type=Unknown)

ZIPCode

ColumnSchema(logical_type=PostalCode)

深度特征合成与计算特征矩阵的变更#

Featuretools 1.0 中,featuretools.dfsfeaturetools.calculate_feature_matrix 的参数名称略有变化。在旧版本中,用户可以使用默认原语和选项生成特征列表,如下所示

features = ft.dfs(entityset=es,
                  target_entity='items',
                  features_only=True)

在 Featuretools 1.0 中,target_entity 参数已重命名为 target_dataframe_name,但除此之外,此基本调用保持不变。

[22]:
features = ft.dfs(entityset=es, target_dataframe_name="items", features_only=True)
features
[22]:
[<Feature: order_id>,
 <Feature: item_price>,
 <Feature: on_sale>,
 <Feature: orders.COUNT(items)>,
 <Feature: orders.MAX(items.item_price)>,
 <Feature: orders.MEAN(items.item_price)>,
 <Feature: orders.MIN(items.item_price)>,
 <Feature: orders.PERCENT_TRUE(items.on_sale)>,
 <Feature: orders.SKEW(items.item_price)>,
 <Feature: orders.STD(items.item_price)>,
 <Feature: orders.SUM(items.item_price)>,
 <Feature: orders.DAY(order_date)>,
 <Feature: orders.MONTH(order_date)>,
 <Feature: orders.WEEKDAY(order_date)>,
 <Feature: orders.YEAR(order_date)>]

此外,dfs 参数 ignore_entities 已重命名为 ignore_dataframesignore_variables 已重命名为 ignore_columns。类似地,如果指定了原始选项,则所有对 entities 的引用都应替换为 dataframes,对 variables 的引用应替换为 columns。例如,原始选项 include_groupby_entities 现在是 include_groupby_dataframesinclude_variables 现在是 include_columns

如果传入一个 EntitySet 和要计算的特征列表,featuretools.calculate_feature_matrix 的基本调用保持不变。但是,通过传入 entitiesrelationships 列表来调用 calculate_feature_matrix 的用户应注意,entities 参数已重命名为 dataframes,字典中的值现在应包含 Woodwork 逻辑类型而不是 Featuretools Variable 类。

[23]:
feature_matrix = ft.calculate_feature_matrix(features=features, entityset=es)
feature_matrix
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f7680da2790> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f7680da90d0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f7680da2160> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f7680da28b0> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
  to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/stable/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f7680da91f0> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
  to_merge = base_frame.groupby(
[23]:
order_id item_price on_sale orders.COUNT(items) orders.MAX(items.item_price) orders.MEAN(items.item_price) orders.MIN(items.item_price) orders.PERCENT_TRUE(items.on_sale) orders.SKEW(items.item_price) orders.STD(items.item_price) orders.SUM(items.item_price) orders.DAY(order_date) orders.MONTH(order_date) orders.WEEKDAY(order_date) orders.YEAR(order_date)
id
0 0 29.95 False 1 29.95 29.950 29.95 0.0 NaN NaN 29.95 2 1 5 2021
1 1 4.99 True 2 10.25 7.620 4.99 0.5 NaN 3.719382 15.24 3 1 6 2021
2 1 10.25 False 2 10.25 7.620 4.99 0.5 NaN 3.719382 15.24 3 1 6 2021
3 2 20.50 True 2 20.50 18.245 15.99 0.5 NaN 3.189052 36.49 4 1 0 2021
4 2 15.99 False 2 20.50 18.245 15.99 0.5 NaN 3.189052 36.49 4 1 0 2021

除了参数名称的更改之外,用户还应注意返回的特征矩阵的其他几个更改。首先,由于 Woodwork 定义列类型的方式与之前的 Featuretools 实现方式略有不同,旧版本和新版本生成的特征可能存在一些差异。最显著的影响在于外键列的处理方式。以前,Featuretools 将所有外键(以前称为 Id)列视为分类列,并会从这些列生成相应的特征。从 1.0 版本开始,外键列不再限于分类类型,如果它们是其他类型(例如 Integer),则不会从这些列生成特征。如上所示,手动将外键列转换为 Categorical 将使生成的特征更接近于旧版本的结果。

此外,由于 Woodwork 的类型推断过程与旧版 Featuretools 类型推断过程不同,EntitySet 中的列类型可能会被识别为不同。列类型的这种差异可能会影响生成的特征。如果保持相同的特征集很重要,请检查 EntitySet 数据框中的所有逻辑类型,并更新它们为预期类型,如果某些列被推断为意外类型。

最后,Featuretools 计算的特征矩阵现在将初始化 Woodwork。这意味着用户可以通过 Woodwork 命名空间查看特征矩阵的列类型信息,如下所示。

[24]:
feature_matrix.ww
[24]:
物理类型 逻辑类型 语义标签
order_id int64 Integer ['foreign_key', 'numeric']
item_price float64 Double ['numeric']
on_sale bool Boolean []
orders.COUNT(items) Int64 IntegerNullable ['numeric']
orders.MAX(items.item_price) float64 Double ['numeric']
orders.MEAN(items.item_price) float64 Double ['numeric']
orders.MIN(items.item_price) float64 Double ['numeric']
orders.PERCENT_TRUE(items.on_sale) float64 Double ['numeric']
orders.SKEW(items.item_price) float64 Double ['numeric']
orders.STD(items.item_price) float64 Double ['numeric']
orders.SUM(items.item_price) float64 Double ['numeric']
orders.DAY(order_date) category Ordinal: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] ['category']
orders.MONTH(order_date) category Ordinal: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] ['category']
orders.WEEKDAY(order_date) category Ordinal: [0, 1, 2, 3, 4, 5, 6] ['category']
orders.YEAR(order_date) category Ordinal: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519, 1520, 1521, 1522, 1523, 1524, 1525, 1526, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1554, 1555, 1556, 1557, 1558, 1559, 1560, 1561, 1562, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1578, 1579, 1580, 1581, 1582, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593, 1594, 1595, 1596, 1597, 1598, 1599, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614, 1615, 1616, 1617, 1618, 1619, 1620, 1621, 1622, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1632, 1633, 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1658, 1659, 1660, 1661, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1680, 1681, 1682, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1692, 1693, 1694, 1695, 1696, 1697, 1698, 1699, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735, 1736, 1737, 1738, 1739, 1740, 1741, 1742, 1743, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1758, 1759, 1760, 1761, 1762, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774, 1775, 1776, 1777, 1778, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1788, 1789, 1790, 1791, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812, 1813, 1814, 1815, 1816, 1817, 1818, 1819, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1834, 1835, 1836, 1837, 1838, 1839, 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1852, 1853, 1854, 1855, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1889, 1890, 1891, 1892, 1893, 1894, 1895, 1896, 1897, 1898, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2049, 2050, 2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2067, 2068, 2069, 2700, 2701, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2710, 2711, 2712, 2713, 2714, 2715, 2716, 2717, 2718, 2719, 2720, 2721, 2722, 2723, 2724, 2725, 2726, 2727, 2728, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2767, 2768, 2769, 2770, 2771, 2772, 2773, 2774, 2775, 2776, 2777, 2778, 2779, 2780, 2781, 2782, 2783, 2784, 2785, 2786, 2787, 2788, 2789, 2790, 2791, 2792, 2793, 2794, 2795, 2796, 2797, 2798, 2799, 2800, 2801, 2802, 2803, 2804, 2805, 2806, 2807, 2808, 2809, 2810, 2811, 2812, 2813, 2814, 2815, 2816, 2817, 2818, 2819, 2820, 2821, 2822, 2823, 2824, 2825, 2826, 2827, 2828, 2829, 2830, 2831, 2832, 2833, 2834, 2835, 2836, 2837, 2838, 2839, 2840, 2841, 2842, 2843, 2844, 2845, 2846, 2847, 2848, 2849, 2850, 2851, 2852, 2853, 2854, 2855, 2856, 2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865, 2866, 2867, 2868, 2869, 2870, 2871, 2872, 2873, 2874, 2875, 2876, 2877, 2878, 2879, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2887, 2888, 2889, 2890, 2891, 2892, 2893, 2894, 2895, 2896, 2897, 2898, 2899, 2900, 2901, 2902, 2903, 2904, 2905, 2906, 2907, 2908, 2909, 2910, 2911, 2912, 2913, 2914, 2915, 2916, 2917, 2918, 2919, 2920, 2921, 2922, 2923, 2924, 2925, 2926, 2927, 2928, 2929, 2930, 2931, 2932, 2933, 2934, 2935, 2936, 2937, 2938, 2939, 2940, 2941, 2942, 2943, 2944, 2945, 2946, 2947, 2948, 2949, 2950, 2951, 2952, 2953, 2954, 2955, 2956, 2957, 2958, 2959, 2960, 2961, 2962, 2963, 2964, 2965, 2966, 2967, 2968, 2969, 2970, 2971, 2972, 2973, 2974, 2975, 2976, 2977, 2978, 2979, 2980, 2981, 2982, 2983, 2984, 2985, 2986, 2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999] ['category']

Featuretools 现在通过区分特征是原始数据框中已有的,还是由 Featuretools 创建的来标记特征。此信息存储在列的 Woodwork origin 属性中。原始数据中的列将被标记为 base,而由 Featuretools 创建的特征将被标记为 engineered

为了演示如何访问此信息,让我们比较特征矩阵中的两个特征:item_priceorders.MEAN(items.item_price)item_price 存在于原始数据中,而 orders.MEAN(items.item_price) 由 Featuretools 创建。

[25]:
feature_matrix.ww["item_price"].ww.origin
[25]:
'base'
[26]:
feature_matrix.ww["orders.MEAN(items.item_price)"].ww.origin
[26]:
'engineered'

其他变更#

除了上面概述的更改之外,Featuretools 1.0 中还有一些其他较小的更改,现有用户应该注意。

  • EntitySet 中数据框的列顺序可能与之前不同。以前,Featuretools 会重新排序列,以便索引列始终是数据框中的第一列。此行为已被移除,不再保证索引列是数据框中的第一列。现在,索引列将保留在将其添加到 EntitySet 时的位置。

  • 对于 LatLong 列,旧版本的 Featuretools 会将列中的单个 nan 值替换为元组 (nan, nan)。现在不再是这种情况,单个 nan 值将保留在 LatLong 列中。根据 Woodwork 中的行为,LatLong 列中的任何 (nan, nan) 值将被替换为单个 nan 值。

  • 由于 Featuretools 不再定义具有关系属性的 Variable 对象,因此已移除 featuretools.variable_types.graph_variable_types 函数。

  • featuretools.variable_types.list_variable_types 实用函数已移除,并由两个相应的 Woodwork 函数替换:woodwork.list_logical_typeswoodwork.list_semantic_tags。从 Featuretools 1.0 开始,应使用 Woodwork 实用函数来获取可应用于数据框列的逻辑类型和语义标签的信息。